铋基无铅压电敏感材料的性能调控研究进展

[1] 王中林. 压电电子学与压电光电子学[M]. 北京: 科学出版社, 2012.

[2] Lonkar C M, Kharat D K, Prasad S, et al. Chapter 25 Synthesis, Characterization, and Development of PZT based Composition for Power Harvesting and Sensors Application, in: Handbook of Nanoceramic and Nanocomposite Coatings and Materials[M]. Oxford: Butterworth Heinemann, 2015: 551 577.

[3] Wang Z L, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242 246.

[4] (美)厄尔图克, (美)英曼. 压电能量收集[M]. 舒海生, 赵 丹, 史肖娜, 译. 北京: 国防工业出版社, 2015.

[5] Chen X, Guo S, Li J, et al. Flexible piezoelectric nanofiber composite membranes as high performance acoustic emission sensors[J]. Sensor Actuat A Phys., 2013, 199: 372 378.

[6] 郑木鹏, 侯育冬, 朱满康, 等. 能量收集用压电陶瓷材料研究进展[J]. 硅酸盐学报, 2016, 44(3): 359 366.

[7] Wang D W, Wang G, Murakami S, et al. BiFeO3 BaTiO3: A new generation of lead free electroceramics[J]. J. Adv. Dielect., 2018, 8(6): 1830004.

[8] Lee M H, Kim D J, Park J S, et al. High performance lead free piezoceramics with high curie temperatures[J]. Adv. Mater., 2015, 27: 6976 6982.

[9] 吴家刚. 铌酸钾钠基无铅压电陶瓷的发展与展望[J]. 四川师范大学学报(自然科学版), 2019, 42(2): 143 153.

[10] Baettig P, Schelle C F, LeSar R, et al. Theoretical prediction of new high performance lead free piezoelectrics[J]. Chem. Mater., 2005, 17(6): 1376 1380.

[11] Okuno Y, Sakashita Y. Born effective charges and piezoelectric coefficients of BiXO3[J]. Jpn. J. Appl. Phys., 2009, 48: 09KF04.

[12] Noheda B, Cox D E, Shirane G, et al. A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution[J]. Appl. Phys. Lett., 1999, 74(14): 2059 2061.

[13] Fu H, Cohen R E. Polarization rotation mechanism for ultrahigh electromechanical response in single crystal piezoelectrics[J]. Nature, 2000, 403: 281 283.

[14] 杨凤娟, 程 璇, 张 颖. 掺镧锆钛酸铅陶瓷电致畴变过程中的相变[J]. 中国有色金属学报, 2015, 25(10): 2777 2782.

[15] Jean F, Courtois C. The PZT System, in: M. Pomeroy (Ed.) Encyclopedia of Materials: Technical Ceramics and Glasses[M]. Oxford: Elsevier, 2021: 345 357.

[16] Leontsev S O, Eitel R E. Dielectric and piezoelectric properties in Mn Modified (1-x)BiFeO3-xBaTiO3 ceramics[J]. J. Am. Ceram. Soc., 2009, 92(12): 2957 2961.

[17] Yabuta H, Watanabe M, Watanabe T, et al. Structural investigation of ferroelectric BiFeO3 BaTiO3 solid solutions near the rhombohedral pseudocubic phase boundary[J]. Appl. Phys. Lett., 2020, 116: 252902.

[18] Lin Y, Zhang L, Zheng W, et al. Structural phase boundary of BiFeO3 Bi(Zn1/2Ti1/2)O3 BaTiO3 lead free ceramics and their piezoelectric properties[J]. J. Mater. Sci Mater. El, 2015, 26: 7351 7360.

[19] Liu Y Y, Yang L, Li J Y. Strain engineered orthorhombic rhombohedral phase boundary in epitaxial bismuth ferrite films[J]. J. Appl. Phys., 2013, 113: 183524.

[20] Kim S, Khanal G P, Nam H W, et al. Structural and electrical characteristics of potential candidate lead free BiFeO3 BaTiO3 piezoelectric ceramics[J]. J. Appl. Phys., 2017, 122: 164105.

[21] Saito Y, Saito H X, Tani T, et al. Lead free piezoceramics[J]. Nature, 2004, 432: 84 87.

[22] Yao Z, Xu C, Hao H, et al. Manganese doped BiFeO3 BaTiO3 high temperature piezoelectric ceramics: Phase structures and defect mechanism[J]. Int. J. Appl. Ceram. Technol., 2016, 13(3): 549 553.

[23] Kim D J, Lee M H, Park J S, et al. Ferroelectric and piezoelectric properties of Mn modified BiFeO3 BaTiO3 ceramics[J]. J. Electroceram, 2014, 33: 37 41.

[24] Kim D J, Lee M H, Song T K. Comparison of multi valent manganese oxides (Mn4+, Mn3+, and Mn2+) doping in BiFeO3 BaTiO3 piezoelectric ceramics[J]. J. Eur. Ceram. Soc., 2019, 39: 4697 4704.

[25] Wang D, Khesro A, Murakami S, et al. Temperature dependent, large electromechanical strain in Nd doped BiFeO3 BaTiO3 lead free ceramics[J]. J. Eur. Ceram. Soc., 2017, 37: 1857 1860.

[26] Habib M, Akram F, Ahmad P, et al. Donor multiple effects on the ferroelectric and piezoelectric performance of lead free BiFeO3 BaTiO3 ceramics[J]. Mater. Lett., 2022, 315: 131950.

[27] Habib M, Lee M H, Kim D J, et al. Enhanced piezoelectric performance of donor La3+ doped BiFeO3 BaTiO3 lead free piezoceramics[J]. Ceram. Int., 2020, 46: 7074 7080.

[28] Khan S A, Akram F, Bae J, et al. Enhancing piezoelectric coefficient with high curie temperature in BiAlO3 modified BiFeO3 BaTiO3 lead free ceramics[J]. Solid State Sci., 2019, 98: 106040.

[29] Khan S A, Malik R A, Akram F, et al. Synthesis and electrical properties of 0.65Bi1.05Fe1-xGaxO3 0.35BaTiO3 piezoceramics by air quenching process[J]. J. Electroceram, 2018, 41: 60 66.

[30] Zhou C, Feteira A, Shan X, et al. Remarkably high temperature stable piezoelectric properties of Bi(Mg0.5Ti0.5)O3 modified BiFeO3 BaTiO3 ceramics[J]. Appl. Phys. Lett., 2012, 101: 032901.

[31] Fujii I, Iizuka R, Nakahira Y, et al. Electric field induced lattice strain in pseudocubic Bi(Mg1/2Ti1/2)O3 modified BaTiO3 BiFeO3 piezoelectric ceramics[J]. Appl. Phys. Lett., 2016, 108: 172903.

[32] Fujii I, Mitsui R, Nakashima K. Effect of sintering condition and V doping on the piezoelectric properties of BaTiO3 Bi(Mg1/2Ti1/2)O3 BiFeO3 ceramics[J]. J. Ceram. Soc. Jpn, 2013, 121(8): 589 592.

[33] 黄志强, 何秀将, 何新华, 等. Sb2O3掺杂BiFeO3 BaTiO3压电陶瓷的结构及电性能研究[J]. 人工晶体学报, 2021, 50(3): 565 571, 586.

[34] 张晓燕, 杜 强, 赵晓楠, 等. BiFeO3 BaTiO3 LaFeO3三元多铁性陶瓷材料的制备及性能[J]. 稀有金属材料与工程, 2020, 49(2): 520 525.

[35] Belik A A, Wuernisha T, Kamiyama T, et al. High pressure synthesis, crystal structures, and properties of perovskite like BiAlO3 and pyroxene like BiGaO3[J]. Chem. Mater., 2006, 18(1): 133 139.

[36] Zylberberg J, Belik A A, Takayama Muromachi E, et al. Bismuth aluminate: A new high TC lead free piezo /ferroelectric[J]. Chem. Mater., 2007, 19(26): 6385 6390.

[37] Shan X, Zhou C, Cen Z, et al. Bi(Zn1/2Ti1/2)O3 modified BiFeO3 BaTiO3 lead free piezoelectric ceramics with high temperature stability[J]. Ceram. Int., 2013, 39: 6707 6712.

[38] Lee Y J, Kim J S, Han S H, et al. Effect of sintering temperature on the piezoelectric properties in BiFeO3 BaTiO3 ceramics[J]. J. Korean Phys. Soc., 2012, 61(6): 947 950.

[39] Kim D J, Lee M H, Park J S, et al. Effects of sintering temperature on the electric properties of Mn modified BiFeO3 BaTiO3 bulk ceramics[J]. J. Korean Phys. Soc., 2015, 66(7): 1115 1119.

[40] Wan Y, Li Y, Li Q, et al. Microstructure, ferroelectric, piezoelectric, and ferromagnetic properties of Sc Modified BiFeO3 BaTiO3 multiferroic ceramics with MnO2 addition[J]. J. Am. Ceram. Soc., 2014, 97(6): 1809 1818.

[41] Joo H W, Kim D S, Kim J S, et al. Piezoelectric properties of Mn doped 0.75BiFeO3 0.25BaTiO3 ceramics[J]. Ceram Int., 2016, 42: 10399 10404.

[42] Cheng S, Zhao L, Zhang B P, et al. Lead free 0.7BiFeO3 0.3BaTiO3 high temperature piezoelectric ceramics: Nano BaTiO3 raw powder leading to a distinct reaction path and enhanced electrical properties[J]. Ceram. Int., 2019, 45: 10438 10447.

[43] Yang L, Chen C, Jiang X, et al. Enhanced ferroelectric and piezoelectric properties of BiFeO3 BaTiO3 lead free ceramics by simultaneous optimization of Bi compensation and sintering conditions[J]. Ceram. Int., 2022, 48: 12866 12874.

[44] Chen J, Xing X, Watson A, et al. Rapid synthesis of multiferroic BiFeO3 single crystalline nanostructures[J]. Chem. Mater., 2007, 19(15): 3598 3600.

[45] Lee M H, Park J S, Kim D J, et al. Ferroelectric and piezoelectric properties of BiFeO3 BaTiO3 solid solution ceramics[J]. Ferroelectrics, 2013, 452: 7 12.

[46] Alikin D O, Turygin A P, Walker J, et al. The effect of phase assemblages, grain boundaries and domain structure on the local switching behavior of rare earth modified bismuth ferrite ceramics[J]. Acta Mater., 2017, 125: 265 273.

[47] Moriana A D, Zhang S. Lead free textured piezoceramics using tape casting: A review[J]. J. Materiomics, 2018, 4: 277 303.

[48] Zhang H, Zhu Y, Fan P, et al. Temperature insensitive electric field induced strain and enhanced piezoelectric properties of 〈001〉 textured (K,Na)NbO3 based lead free piezoceramics[J]. Acta Mater., 2018, 156: 389 398.

[49] Chae S J, Na J W, Kim D S, et al. Application of [001] textured (K,Na)(Nb,Sb)O3 CaZrO3 thick films to piezoelectric energy harvesters[J]. Ceram. Int., 2022.

[50] Bai W, Li H, Xi J, et al. Effect of different templates and texture on structure evolution and strain behavior of 〈001〉 textured lead free piezoelectric BNT based ceramics[J]. J. Alloy Compd., 2016, 656: 13 23.

[51] Bai W, Chen D, Li P, et al. Enhanced electromechanical properties in 〈001〉 textured (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead free piezoceramics[J]. Ceram. Int., 2016, 42: 3429 3436.

[52] Ozaki T, Kitagawa S, Nishihara S, et al. Ferroelectric properties and nano scaled domain structures in (1-x)BiFeO3-xBaTiO3 (0.33<x<0.50)[J]. Ferroelectrics, 2009, 385: 155 161.

[53] Yang F J, Cheng X, Zhou Z D, et al. An analysis of domain reorientation in PLZT ceramics by in situ Raman spectroscopy[J]. J. Appl. Phys., 2009, 106: 114115.

[54] Hang Q, Xing Z, Zhu X, et al. Dielectric properties and related ferroelectric domain configurations in multiferroic BiFeO3 BaTiO3 solid solutions[J]. Ceram. Int., 2012, 38S: S411 S414.

[55] 杨凤娟, 程 璇, 张 颖. 电疲劳对掺镧锆钛酸铅陶瓷电致畴变行为的影响[J]. 硅酸盐学报, 2015, 43(3): 292 299.

[56] Wada S, Yako K, Yokoo K, et al. Domain wall engineering in barium titanate single crystals for enhanced piezoelectric properties[J]. Ferroelectrics, 2006, 334: 17 27.

[57] Xu K, Li J, Lv X, et al. Superior piezoelectric properties in potassium sodium niobate lead free ceramics[J]. Adv. Mater., 2016, 28: 8519 8523.

[58] Wang B, Li F, Chen L Q. Inverse domain size dependence of piezoelectricity in ferroelectric crystals[J]. Adv. Mater., 2021, 33: 2105071.

[59] Li C, Zheng T, Wu J. Competitive mechanism of temperature dependent electrical properties in BiFeO3 BaTiO3 ferroelectrics controlled by domain evolution[J]. Acta Mater., 2021, 206: 116601.